on the skew spectral moments of graphs

نویسندگان

gholam hossein fath-tabar

university of kashan fatemeh taghvaee

university of kashan

چکیده

let $g$ be a simple graph‎, ‎and $g^{sigma}$‎ ‎be an oriented graph of $g$ with the orientation ‎$sigma$ and skew-adjacency matrix $s(g^{sigma})$‎. ‎the $k-$th skew spectral‎ ‎moment of $g^{sigma}$‎, ‎denoted by‎ ‎$t_k(g^{sigma})$‎, ‎is defined as $sum_{i=1}^{n}( ‎‎‎lambda_{i})^{k}$‎, ‎where $lambda_{1}‎, ‎lambda_{2},cdots‎, ‎lambda_{n}$ are the eigenvalues of $g^{sigma}$‎. ‎suppose‎ ‎$g^{sigma_1}_{1}$ and $g^{sigma_2}_{2}$ are two digraphs‎. ‎if there‎ ‎exists an integer $k$‎, ‎$1 leq k leq n-1$‎, ‎such that for each‎ ‎$i$‎, ‎$0 leq i leq k-1$‎, ‎$t_i(g^{sigma_1}_{1}) =‎ ‎t_i(g^{sigma_2}_{2})$ and‎ ‎$t_k(g^{sigma_1}_{1})

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

signless laplacian spectral moments of graphs and ordering some graphs with respect to them

let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $a(g)$ the adjacency matrix of $g$. the  signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of  graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Estimation of the Handwritten Text Skew Based on Binary Moments

Binary moments represent one of the methods for the text skew estimation in binary images. It has been used widely for the skew identification of the printed text. However, the handwritten text consists of text objects, which are characterized with different skews. Hence, the method should be adapted for the handwritten text. This is achieved with the image splitting into separate text objects ...

متن کامل

skew-spectra and skew energy of various products of graphs

given a graph $g$, let $g^sigma$ be an oriented graph of $g$ with the orientation $sigma$ and skew-adjacency matrix $s(g^sigma)$. then the spectrum of $s(g^sigma)$ consisting of all the eigenvalues of $s(g^sigma)$ is called the skew-spectrum of $g^sigma$, denoted by $sp(g^sigma)$. the skew energy of the oriented graph $g^sigma$, denoted by $mathcal{e}_s(g^sigma)$, is defined as the sum of the n...

متن کامل

survey on the rule of the due & hindering relying on the sheikh ansaris ideas

قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...

15 صفحه اول

Solution to a Conjecture on the Maximum Skew-Spectral Radius of Odd-Cycle Graphs

Let G be a simple graph with no even cycle, called an odd-cycle graph. Cavers et al. [Linear Algebra Appl. 436(12):4512-1829, 2012] showed that the spectral radius of G is the same for every orientation σ of G, and equals the maximum matching root of G. They proposed a conjecture that the graphs which attain the maximum skew spectral radius among the odd-cycle graphs G of order n are isomorphic...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

جلد ۶، شماره ۱، صفحات ۴۷-۵۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023